
Math 429 - Exercise Sheet 11

1. Explicitly write down the Cartan matrices corresponding to o2n+1, sp2n, o2n (based on the
simple roots you worked out last time) and check that the corresponding Dynkin diagrams are
indeed Bn, Cn, Dn.

Solution. Consider the root system Dn associated to the Lie algebra o2n. Recall our choice of
simple roots

βk = ek − ek+1, k = 1, . . . , n− 1, βn = en−1 + en.

from Exercise Sheet 9. The associated Cartan matrix is an n× n integer matrix whose entries are

ci,j =
2(βi, βj)

(βi, βi)
.

Explicitely we get 

2 −1 0 . . . . . . . . . . . . 0
−1 2 −1 . . . . . . . . . . . . 0
0 −1 2 −1 . . . . . . . . . 0

. . .

0 . . . . . . −1 2 −1 0 0
0 0 . . . . . . −1 2 −1 −1
0 0 . . . . . . 0 −1 2 0
0 0 . . . . . . 0 −1 0 2


.

Consider the root system Bn associated to the Lie algebra o2n+1. Recall our choice of simple roots

βk = ek − ek−1, k = 1, . . . , n− 1, βn = en

from Exercise Sheet 9. The associated Cartan matrix is

2 −1 0 . . . . . . . . . 0
−1 2 −1 . . . . . . . . . 0
0 −1 2 −1 . . . . . . 0

. . .

0 . . . . . . −1 2 −1 0
0 0 . . . . . . −1 2 −1
0 0 . . . . . . 0 −2 2


.

Consider the root system Cn associated to the Lie algebra sp2n. Recall our choice of simple roots

βk = ek − ek−1, k = 1, . . . , n− 1, βn = 2en
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from Exercise Sheet 9. The associated Cartan matrix is

2 −1 0 . . . . . . . . . 0
−1 2 −1 . . . . . . . . . 0
0 −1 2 −1 . . . . . . 0

. . .

0 . . . . . . −1 2 −1 0
0 0 . . . . . . −1 2 −2
0 0 . . . . . . 0 −1 2


.

2. For any root system R ⊂ U , show that

R∨ =

{
α∨(−) =

2(−, α)

(α, α)

∣∣∣α ∈ R

}
⊂ U∗

is also a root system (we use the fact that the inner product identifies U ∼= U∗). Show that if
α1, . . . , αr is a set of simple roots of R, then α∨

1 , . . . , α
∨
r is a set of simple roots of R∨.

Solution. We make the usual identification

U
∼=−→ U∗, x 7→ (−, x), (1)

which induces a scalar product on U∗. Let α, β be two roots in R. Then (α∨, α∨) = 4
(α,α) , and

2
(α∨, β∨)

(α∨, α∨)
= 2

(α, α)

4

2 · 2(α, β)
(α, α)(β, β)

= 2
(α, β)

(β, β)
(2)

is an integer. Moreover, we observe that α∨ is a multiple of (−, α), so the reflection sα∨ is the same
as s(−,α). Thus,

sα∨(β∨) = s(−,α)

(
2(−, β)

(β, β)

)
= s(−,α)

(
2(−, β)

(sα(β), sα(β))

)
= (sα(β))

∨, (3)

where we also used the fact that sα is an isometry. Equations (2) and (3) imply that R∨ is again
a root system.
The choice of a hyperplane V ⊂ U determines positive roots R+ ⊂ R. The associated simple roots
α1, . . . , αr are the indecomposable ones in R+. Clearly the map (1) identifies V with a hyperplane
V ∗ ⊂ U∗, and the set of positive roots determined by V ∗ is exactly the image (R+)∨. We have to
show that the set of indecomposable roots in (R+)∨ is exactly α∨

1 , . . . , α
∨
r . We make use of the

following Lemma, which is not difficult to prove.

Lemma 1. For any root system R ⊂ U , let R+ be the positive roots, and let α be a simple root.
Then α cannot be written as a linear combination of elements in R+ − {α} with non-negative
coefficients.

In our case let α be a positive root of R, but not simple. Then α∨ is a linear combination of simple
roots in (R+)∨ with non-negative coeeficients. Then, Lemma 1 tells us that α∨ cannot be a simple
root, which implies our claim.

3. Show that the Weyl group of an irreducible root system acts transitively on the set of roots of
given length (i.e. for any pair of short/long roots, there is a Weyl group element sending one to
the other). Hint: use the fact that W ↷ E is an irreducible representation (and prove this fact).
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Solution. Let α and β be two roots of the same length. We know from the proof of Proposition
27 in the Lecture Notes that W ↷ E is an irreducible representation and this allows us to find an
element w ∈ W such that (w(α), β) ̸= 0. Up to a reflection in W , we can also assume that the
number (w(α), β) is positive, so that the angle θ between β and w(α) is acute. Since β and w(α)
have the same length, we have cos(θ) =

cw(α),β

2 . Moreover, cw(α),β ∈ Z. Summing up, we have

cos(θ) ∈ {1
2
, 1}.

If the above number is 1 we are done, whereas if it is 1
2 , then the angle between β and w(α) is π/3.

This means that the intersection of R with the plane generated by β and α contains A2. Since the
Weyl group of A2 acts transitively, we are done.

4. Fill in the following gap in the proof of Theorem 19: if a Dynkin diagram consists of a triple
edge connected to a double or triple edge, then the corresponding 3 × 3 matrix S (see Definition
23) is negative-definite.

Solution. We consider a Dynkin diagram consisting of a triple edge connected to a double edge
and we compute its Cartan matrix C as follows.

C =

 2 c12 0
c21 2 c23
0 c32 2

 , (4)

where c12c21 = 3, and c23c32 = 2. We also have the diagonal matrix D from Definition 23, whose
inverse is

D−1 =

 c1,1
2 0 0
0

c2,2
2 0

0 0
c3,3
2

 , (5)

where ci,i > 0 for i = 1, 2, 3. Then we compute the matrix S as

S = D−1C =

 c1,1
c1,1c12

2 0
c2,2c2,1

2 c2,2
c2,2c2,3

2
0

c3,3c3,2
2 c3,3.

 (6)

. We apply Sylvester‘s criterion exploiting the relations among the ci,j ‘s. The first two minors are
c1,1 > 0 and 1

4c1,1c2,2 > 0. The third minor is

1

4
c1,1c2,2c3,3 −

c3,3c3,2
2

· c1,1
c2,2c2,3

2
= −1

4
c1,1c2,2c3,3 < 0.

The case of a Dynkin diagram consisting of a triple edge connected to a triple edge is analogous.

(*) Let g be a complex semisimple Lie algebra, and let G be the corresponding simply connected
complex Lie group. For any root α (corresponding to a henceforth fixed Cartan subalgebra h ⊂ g),
construct an element Sα ∈ G such that

AdSα : g∗ → g∗

sends h∗ to h∗ and coincides with the simple reflection sα. Hint: deal first with the case g = sl2.
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